
Alternative Parallelization Strategies in EST
Clustering

Nishank Trivedi1, Kevin T. Pedretti2, Terry A. Braun1, Todd E. Scheetz1, and
Thomas L. Casavant1

1 The University of Iowa, Iowa City,
Iowa 52242, USA,
tomc@uiowa.edu

2 Sandia National Labs, Albuquerque, New Mexico,
87123, USA

Abstract. One of the fundamental components of large-scale gene dis-
covery projects is that of clustering of Expressed Sequence Tags (ESTs)
from complementary DNA (cDNA) clone libraries. Clustering is used to
create non-redundant catalogs and indices of these sequences. In particu-
lar, clustering of ESTs is frequently used to estimate the number of genes
derived from cDNA-based gene discovery efforts. This paper presents a
novel parallel extension to an EST clustering program, UIcluster4, that
incorporates alternative splicing information and a new parallelization
strategy. The results are compared to other parallelized EST cluster-
ing systems in terms of overall processing time and in accuracy of the
resulting clustering.

1 Introduction

The sequencing of cDNA libraries is the most common format for gene discovery
in higher eukaryotes. The goal of such a project is to utilize the sequences derived
from the cDNAs (ESTs; expressed sequence tags) to derive a non-redundant set.
This set ideally represents an organisms entire complement of genes. EST-based
gene-discovery projects are in progress for numerous species of medical, scien-
tific, and industrial interest. The benefits of EST-based gene discovery include
the ability to rapidly identify transcribed genes, the ability to identify exon-
intron structure (when coupled with genomic sequence), and information on gene
expression. EST data is so useful that the National Center for Biotechnology In-
formation (NCBI) provides a separate division specifically for EST sequences
(dbEST) [1].

However, different genes are expressed at different levels. Thus, a given gene’s
transcript may be present in 0, 1 or many copies within a cell. Because these
transcripts are used to generate the cDNAs, both the cDNAs and the ESTs
derived from them will also be present in similarly variable levels.

The presence of this redundancy within the EST databases, requires a pro-
grammatic method to calculate the complement of genes they represent. These
methods (termed clustering) utilize sequence-based comparisons to determine

V. Malyshkin (Ed.): PaCT 2003, LNCS 2763, pp. 384–393, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.2 Für schnelle Web-Anzeige optimieren: Ja Piktogramme einbetten: Ja Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [600 600] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 150 dpi Downsampling für Bilder über: 225 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Mittel Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 600 dpi Downsampling für Bilder über: 900 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren Methode: StandardArbeitsbereiche: Graustufen ICC-Profil: RGB ICC-Profil: sRGB IEC61966-2.1 CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Nein ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: NeinANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [600 600]>> setpagedevice

Alternative Parallelization Strategies in EST Clustering 385

sets of strongly similar sequences (clusters). The primary difficulty associated
with EST-based gene-discovery projects is that ESTs are single-pass sequences,
and as such they are relatively error prone (approximately 3% on average [2]).

NCBI also provides a curated and annotated gene index (UniGene) [3] for
several species, utilizing the available mRNA and EST sequences to estimate the
gene complement. This paper describes and compares several programs that may
be used to create non-redundant “UniGene” sets from EST data, and analyzes
three different approaches for parallelization of this task.

2 Background

Clustering plays an important role in large scale gene-discovery projects. It not
only saves time by identifying redundant (EST) sequences but also provides
useful information regarding gene-discovery rate [4]. Another significant use of
clustering is to create non-redundant gene indices. As suggested in this paper,
clustering can be further used to identify possible alternatively spliced sites in
mRNA gene transcripts

There are several varying clustering methods and tools in use today. However,
the objective of all such methods is to effectively assess the similarity between all
pairs of sequences and place them into equivalence classes. Ideally, these classes
correspond, one to one, onto distinct genes. It should be noted that such a proce-
dure based entirely on subsequence similarity cannot achieve perfect fidelity with
respect to gene classes. A number of other criteria, not apparent in the primary
RNA sequence data, are necessary for such a classification. However, a sequence-
based classification is of extremely high usefulness. One of the most widely used
clustering tools is NCBI’s Unigene clustering [5]. It uses global pairwise sequence
comparison, and a stringent protocol for assigning closely related sequences to
a common cluster. However, it does not support incremental clustering. Hence,
each clustering “build” must begin from the same initial starting point. As the
number of known ESTs in homo sapiens currently stands at approximately 5
million, and requires more than one month of computation time, the ability
to perform incremental clustering becomes obvious. Also, an EST relating to
two different clusters is discarded, overlooking any possible alternative splice
sites. The Institute for Genome Research (TIGR) [6], produces gene indices for
many organisms. It performs a pairwise alignment of incoming sequences with a
template obtained from a database consisting of expressed mRNA transcripts,
as well as tentative consensus assemblies of other ESTs, mRNAs and cDNAs.
Sequences must qualify through strict identity criteria. Each cluster is finally
assembled to produce a consensus sequence. Due to very strict clustering rules,
TIGR gene indices discard many under-represented, divergent or low-quality
sequences, leading to under-clustering of sequences. The SANBI STACK clus-
tering approach [7] was developed primarily for human databases, but is general
purpose. It performs a looser clustering of sequences, but has a strict assembly
phase. The clustering is conducted using non-contextual assessment of compo-
sition, and a multiplicity of words within each sequence. Typically, the STACK

386 N. Trivedi et al.

approach produces larger clusters than Unigene, and has longer consensus se-
quences for each cluster than TIGR.

All of the above programs are essentially sequential. A parallel clustering
method developed at Iowa State University [8], PaCE, uses an implementation
of suffix trees for sequence comparison. The method is a strict sequence identity
match clustering method and performs an NxN alignment, although in parallel,
hence offsetting the high costs associated. The overall method is to construct
suffix trees in parallel, perform pairwise alignment for selective sequences, and
finally to group them together based on a similarity score. However, the method
demands a specific hardware requirement, and overlooks divergent cases within
EST sequences. The UIcluster family of solutions (both serial and parallel)
has been evolving in a production environment at the University of Iowa since
1997. The key characteristics of UIcluster are incremental clustering, the main-
tenance of a “primary” representative element for each cluster, and a hashing
scheme to quickly identify potentially meaningful cluster matches for each newly
considered input sequence. The stringency of the clustering is a user-definable
parameter, although performance is also a sensitive function of this aspect. Par-
allelization of UIcluster has now been performed relative to both the cluster
space [9], and input space, which is the main focus of this paper.

The following is a brief description of the underlying approach of UIcluster.
After an incoming sequence has been read from an input file, it is compared
against all existing clusters. The comparison is performed only with the primary
element of each cluster, where the primary is a single representative sequence of
the entire cluster (usually the longest, and therefore most informative member).
If the incoming sequence matches, or “hits” any cluster primary, and further
satisfies specified similarity criteria, it is added to that cluster. Otherwise, the
incoming sequence itself becomes the primary element of a new cluster. The
basic search screening is based on a criteria of n matching positions in a window
of length m. Hashing is usually performed on a short motif roughly one quarter
of the size of m. The m − n positions in discordance may be either substitution
or gap errors. As a practical necessity, a global table of hash values and a map
to each cluster containing those values, is used to count hits to the primaries
of any given cluster. In many cases, it is possible to avoid actual alignment of
a new sequence to the primary of the best cluster hit by employing deduction
based on the number of hashes which correspond between the two sequences. The
efficiency gained by using hashes to a primary, and thus avoiding alignment is
dramatic. Basing our parallel versions of UIcluster on this already optimized
serial method provides a number of advantages to be described in the next
section.

3 Approach and Implementation

The performance of EST clustering is measured both by time as well as by
memory resource utilization characteristics. Although the use of hashing, and of
a primary sequence for each cluster significantly reduces both these requirements,

Alternative Parallelization Strategies in EST Clustering 387

space remains a limiting factor for even more efficient and heuristic approaches.
Considering the nature of the problem and the size of the data set, parallelization
is an obvious choice for the implementation of this process. Computational and
memory requirements can be distributed across several computers. This adds
to the performance of software so that the program can scale to larger problem
sizes.

UIcluster currently implements two different approaches of parallelization,
distributing across the cluster space and the input space. The MPI (message
passing interface) [10] standard is used for inter-process communications, and
distribution is done among multiple UNIX processes.

3.1 Parallelization on Cluster Space

In this scheme of parallelization, implemented in UIcluster3, each cluster is
stored on exactly one compute node. The clusters are evenly distributed among
all nodes. When a sequence is brought in, it is copied to all available nodes
and is processed in parallel. Since each node has a different set of clusters, the
incoming sequence is compared with the divided cluster space in parallel. For
every node, once the local search has been performed, the information about the
best matching primary is communicated to all other nodes. Further, the node
with the best match adds the sequence to its cluster space. In the case of a non-
match, the sequence itself becomes a cluster and is designated to one compute
node.

3.2 Parallelization on Input Space

In the cluster space parallelization method, incorporated in UIcluster4, the
input is the same for all the compute nodes but the clusters being created are
distributed over various processors. A variation on this scheme can be imple-
mented by dividing the sequences also in N non-overlapping groups, where N is
the number of compute nodes available. Instead of distributing clusters over dif-
ferent compute nodes and processing each sequence at all nodes, in this scheme
each node gets an individual sequence. The pool of input sequences is evenly dis-
tributed among all compute nodes. This is similar to running sequential version
of UIcluster in parallel on all nodes, however, with an abridged dataset. Each
node computes its own set of primaries. In the second stage, these primaries are
compared among themselves and related clusters are merged.

The efficiency of this scheme is heavily dependent on the redundancy within
the dataset. If the data has a high rate of redundancy, the clusters being created
on each node are more likely to be merged, involving more communication and
added processing. On a single node or cluster space parallelization, the redundant
data would have converged into a smaller number of clusters. On the contrary,
less redundancy amounts to more clusters hence, input space parallelization
reduces space and time requirements.

388 N. Trivedi et al.

4 Related Issues

4.1 Virtual Primaries

One limitation in early versions of UIcluster was the requirement that a sin-
gle representative sequence (primary sequence) be selected. Even when mRNA
transcript sequences are available, they often lack comprehensive coverage of
the original transcript (especially the untranslated regions). Therefore, EST se-
quences generated from the 3’ end may contain significant amounts of novel se-
quence not represented in the mRNA sequences. Other, more complex, processes
such as alternative splicing and alternative polyadenylation are also sources of
additional novel sequence. To address this issue, we have developed the concept
of a virtual representative sequence (virtual primary). A virtual primary is a
non-redundant representation of the constituent sequences within a cluster. Uti-
lizing virtual primaries enables sequence comparisons to be performed against
only one sequence per cluster, while still searching the entire composite sequence
available for each cluster.

Figure 1 illustrates how a set of partial sequences may be combined to con-
struct a virtual primary. Here, alternate shading is used to denote blocks of
homologous sequence. On the left is a set of ESTs (A,B,C,D,E) derived from the
same gene. The right half shows the effect of adding the sequences into a growing
virtual primary. With a single sequence (A) the virtual primary is identical to
the EST. As sequences containing novel subsequences (B,C) are added into the
cluster, the novel portions are integrated into the virtual primary at the appro-
priate position (A+B+C). If a sequence contains no novel subsequences (D), the
virtual primary is not changed. In the event of a sequence with a novel insertion
(with respect to the virtual primary) (E), the novel portion is incorporated into
the virtual primary at the congruent position (A+B+C+D+E).

Fig. 1. Contruction of a virtual primary. ESTs derived from transcripts of the same
gene are shown at left (A, B, C, D, and E). At right the growing virtual primaries
are shown as each EST is included. The dashed-lines represent regions of sequence
homology.

Incorporating the construction of virtual primaries into the clustering proce-
dure does not affect the strategy used to identify which cluster a sequence belongs

Alternative Parallelization Strategies in EST Clustering 389

to. The only impact is to alter the method of deriving the primary sequence.
This process does add a small overhead into the computation cost clustering,
but does not alter the computational complexity of the algorithm.

4.2 Cluster Viewing and Editing

An ancillary program has been developed to aid in the visualization and edit-
ing of the resulting clusters. This cluster editor was implemented in Java as
both an application and an applet. The applet-based solution makes our clus-
tering method available over the internet to interested users. Search features
were integrated into the editor so that clusters with specific features can quickly
be identified. Currently supported features include clusters with apparent al-
ternative splicing, and those with weak sequence hits - potentially from gene
families. This program facilitated the process of debugging the clustering pro-
gram, enabling erroneous cases to be visualized. Two issues in the construction
of virtual primaries particularly benefited from the use of the cluster editor:
the order in which non-redundant sub-sequences were incorporated, and that all
non-redundant sub-sequences are included in the virtual primary.

4.3 Order of Inclusion

One factor that can significantly affect the clustering is the order in which se-
quences are included. UIcluster’s approach performs smoothly for short EST
sequences (400-1,000bp). However, full length mRNA sequences (1000’s of bp)
may rapidly degrade the performance. As the sequence length increases, so does
the probability of finding additional minimally-matching regions, which results
in an increase in the number of detailed sequence comparisons. For UIcluster3,
splitting the longer sequence into smaller overlapping sequences was a potential
solution. However, when UIcluster4 is used with virtual primaries, the order
in which the sequences are included affects the computation differently. When
longer sequences are included first, although more comparisons are performed,
there are fewer cluster primaries to be compared against. Similarly, less com-
putation is spent on updating the virtual primaries, as more of the sequence is
provided within the longest sequences. The order of inclusion effect was tested us-
ing a dataset of 11,058 sequences with an average length of 460bp, UIcluster4
was run while including the sequences in two different orders. Adding the se-
quences in order of descending length, resulted in a clustering run-time of 169
seconds and generated 7485 clusters. In comparison, when adding the sequences
in ascending order of sequence length the clustering run-time was 193 seconds
and generated 7571 clusters.

5 Results

5.1 Description of Experiment

To evaluate the performance of different clustering methods, several data sets
from Arabidopsis thaliana and Homo sapiens were used. The methods compared

390 N. Trivedi et al.

include parallelizing on the cluster space (UIcluster3), parallelizing on the in-
put space (UIcluster4), and the suffix-tree based method of PaCE. The PaCE
clustering program [8] was included to analyze both parallel speedup and mem-
ory requirements. The publically available UniGene clusters from NCBI were
used to asses the accuracy of the results. The system used in this comparison
was a 16 node, dual processor cluster of 500MHz Pentium III’s, each equipped
with one Gigabyte of memory. The human EST data set consisted of 41,197
sequences with an average length of 403 bp. The Arabidopsis thaliana EST data
set contained 81,414 sequences with an average length of 411 bp. The latter data
set was used for comparing the accuracy between the programs. The use of A.
thaliana rather than human ESTs was important in reducing the effect of known
genes on the purely sequence-based clustering.

5.2 Accuracy Assessment

Although performance is critical in making the clustering results available, they
must also provide an accurate reflection of the underlying mRNA transcripts
from which the cDNAs were derived. To assess the accuracy of the clustering
methods, two separate comparisons were performed. Both used sets of Arabidop-
sis thaliana sequences. The first data set compared the clustering of 81,414 A.
thaliana ESTs. This set had previously been clustered with PaCE by Srinivas
Aluru from Iowa State University. The resulting clusters between UIcluster4
and PaCE were very similar, with 23,642 clusters and 23,995 clusters identified
respectively.

A second assessement of clustering accuracy was performed using the com-
plete set of A. thaliana ESTs and mRNAs from GenBank. In this assessment,
UIcluster4 was compared to NCBI’s UniGene build for A. thaliana. The Uni-
Gene build contained a total of 27,248 clusters including 9,191 singletons. Simi-
lar results were produced with UIcluster4, identifying 23,925 clusters of which
6,682 were singletons. This result indicates that UIcluster4 is more aggressive
in merging sequences into the same cluster, resulting in a more conservative
estimate of clusters numbers.

5.3 Performance Assessment

Both memory utilization and computation time were measured across these data
sets. Table 1 presents the execution time for the same analyses. In this com-
parison, UIcluster3 requires approximately one-tenth of the time of PaCE. As
the number of input sequences increased, the relative difference in computation
time between UIcluster4 and UIcluster3 decreased. With only 5000 sequences,
UIcluster4 required approximately 60% longer than UIcluster3 on the same
set of sequences. However, on the set of 30,000 sequences, that difference was
only 26%. A similar reduction in computation time is observed between PaCE
and UIcluster3 with PaCE requiring approximately 16 times more computation
for 5000 sequences, but only 12 times more in the data set of 20,000 sequences.

Alternative Parallelization Strategies in EST Clustering 391

The peak memory utilization was assessed on a single node with 1GB of
memory, using a subset of the human EST data set. Figure 2 shows the peak
memory usage by the three clustering programs. Values were unavailable for PaCE
with the 30,000 EST data set, as it exhausted the available memory. Note from
this figure that the memory requirements of UIcluster4 increase faster than
UIcluster3 as the number of input sequences grows. This is expected, because
the likelihood of novel subsequences that must be included in the virtual primary
increases as the number of sequences within a cluster increases, Although the
PaCE program has to use at least two nodes (one master and one slave node)
only the memory utilization for the slave node was measured, because it per-
forms sequence comparisons. If the same computation is run in parallel with
UIcluster4, the memory requirement per node is significantly reduced, as there
are fewer clusters to be stored.

Fig. 2. Memory Utilization

Table 1. Execution time performance comparison.

Num of sequences PaCE UIcluster3 UIcluster4
5,000 10 min 37 sec 1 min
10,000 28 min 2 min 7 sec 3 min 28 sec
20,000 1 hr 44 min 8 min 42 sec 12 min
30,000 Out of Mem 20 min 25 min 12 sec

A final performance analysis was performed using the complete set of human
EST and mRNA sequences from the human UniGene build. The parallelization
on the input space method was used to predict the final number of clusters
and the computation time required. This data set contained nearly 4.2 million
sequences. The clustering, utilizing 12 nodes, requires an estimated computa-

392 N. Trivedi et al.

tion time of 100 hours. For this experiment, the data set was divided into 12
files each containing one twelfth of the ESTs. Thus each file contained roughly
400,000 EST sequences. All of the sequences longer than 1,100 bp were put into
a separate file. These thirteen sequence files were first clustered individually. The
resulting cluster files were then clustered together to compute the complete set
of clusters for the 4.2 million EST sequences. Unfortunately, the final clustering
step required more memory that was available. Therefore, the computation time
of that component was estimated.

6 Conclusions

An alternative scheme for parallel clustering using UIcluster has been described
in this paper. The concept of a representative sequence made from the non-
redundant set of subsequences from a cluster’s constituent sequences is also
presented. Such representative sequences can provide further information to bi-
ologists regarding several features of biological interest that might otherwise be
overlooked. The program is comparable in accuracy to other clustering programs,
but requires less computation time. Depending upon the nature of the data set,
either of the parallelization schemes may be used to optimize the memory or
computation requirements.

Acknowledgements. The authors would like to thank Dr. Volker Brendel from
Iowa State University for providing us with the test set of 81,141 A. thaliana
ESTs, Dr. Srinivas Aluru and Anantharaman Kalyanaraman from Iowa State
University for their assistance in obtaining and using the PaCE clustering pro-
gram, and Thomas Bair, Dylan Tack, Jason Grundstad, Jared Bischof, Brian
O’Leary and Jesse Walters for their help and suggestions.

References

1. Boguski, M.S., Lowe, T.M., Tolstoshev, C.M.: dbEST – database for ‘expressed
sequence tags’. Nature Genetics 4 (1993) 332–333

2. Hillier, L., Clark, N., Dubuque, T., Elliston, K., Hawkins, M., Holman, M., Hult-
man, M., Kucaba, T., Le, M., Lennon, G., Marra, M., Parsons, J., Rifkin, L.,
Rohlfing, T., Soares, M., Tan, F., Trevaskis, E., Waterston, R., Williamson, A.,
Wohldmann, P., Wilson, R.: Generation and analysis of 280,000 human expressed
sequence tags. Genome Research 6 (1996) 807–828

3. Schuler, G.D.: Pieces of the puzzle: expressed sequence tags and the catalog of
human genes. Journal of Molecular Medicine 75 (1997) 694–698

4. Bonaldo, M.F., Lennon, G., Soares, M.B.: Normalization and subtraction: two
approaches to facilitate gene discovery. Genome Research 6 (1996) 791–806

5. http://www.ncbi.nlm.nih.gov/UniGene/build.shtml
6. Adams, M.D., Kerlavage, A.R., Flieshmann, R.D., Fuldner, R.A, Bult, C.J., Lee,

N.H., Kirkness, E.F., Weinstock, K.G., Gocayne, J.D., White, O.: Initial assess-
ment of human gene diversity and expression patterns based upon 83 million nu-
cleotides of cDNA sequence. Nature 377 (1995) 3–17

Alternative Parallelization Strategies in EST Clustering 393

7. Miller, R.T., Christoffels, A.G., Gopalakrishnan, C., Burke, J.A., Ptitsyn, A.A.,
Broveak, T.R., Hide, W.A.: A comprehensive approach to clustering of expressed
human gene sequence: The Sequence Tag Alignment and Consensus Knowledge-
base. Genome Research 9 (1999) 1143–1155

8. Kalyanaraman, A., Aluru, S., Kothari, S.: Space and time efficient parallel al-
gorithms and software for EST clustering. International Conference on Parallel
Processing (2002) 331

9. Trivedi, N., Bischof, J., Davis, S., Pedretti, K., Scheetz, T.E., Braun, T.A., Roberts,
C.A., Robinson, N.L., Sheffield, V.C., Soares, M.B., Casavant, T.L.: Parallel cre-
ation of non-redundant gene indices from partial mRNA transcipt. Future Gener-
ation Computer Systems 18 (2002) 863–870

10. Message Passing Interface Form : MPI: A message-passing interface standard. Uni-
versity of Tennessee Technical Report (1994) CS–94230

	Introduction
	Background
	Approach and Implementation
	Parallelization on Cluster Space
	Parallelization on Input Space

	Related Issues
	Virtual Primaries
	Cluster Viewing and Editing
	Order of Inclusion

	Results
	Description of Experiment
	Accuracy Assessment
	Performance Assessment

	Conclusions

